

Integrated Servo Motor ISV Series

BLDC Servo Motor + Drive, 24-50VDC, Frame 57mm ,90W-180W

Chapter 1 Introduction	2
1.1 Features and specifications	2
1.2 Mechanical Specifications	3
Chapter 2 Conection	4
2.1 Connectors and Pin Assignment	4
2.2 DIP Switch Settings	5
2.3 RS232 Communication Cable Connections	5
2.4 Typical Connections	6
Chapter 3 Parameter	8
3.1 Parameter List	
3.2 Parameter function	8
3.2.1 Basic Setting	8
3.2.2 Gain Adjustment	10
3.2.3 Vibration Suppression	12
3.2.4 Velocity Control	12
3.2.5 I/F Monitoring Function	13
3.2.6 Extending setup	15
Chapter 4 Alarm	16
Chapter 5 Run	17
5.1 Inspection Before trial Run	17
5.2 Run	17
5.2.1 Position control	17
5.2.2 Internal speed control	18
Chapter 6 Order information	19
Appendix	19
How to find the hidden parameter	19
Trouble shooting	20
-	

Chapter 1 Introduction

1.1 Features and specifications

iSVxxx integrated servo motor is a 57mm frame size brushless motor integrated with a 16bit encoder and a servo drive. At very compact size and with all components integrated, the iSVxxx can save mounting space, eliminate encoder connection & motor wiring time, reduce interference, and cut/reduce cable and labor costs.

Integrated compact size for saving mounting space & setup time, and reducing electrical interference.

- Step & direction command input for position control
- Compatible mounting size with stepper motor
- Smooth motor movement and excellent respond time
- Isolated control inputs of Pulse, Direction
- In-position and fault outputs to external motion controllers for complete system controls
- Over voltage, over-current, and position-error protection

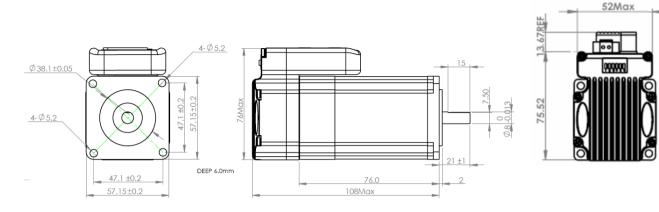
Electrical Specifications

Parameter	Min	Typical	Max	Unit
Input Voltage	20	36	50	VDC
Continuous Current	0	-	6.0	А
Pulse Input Frequency	0	-	0-300	kHz
Pulse Voltage	0	5	24	V
Logic Signal Current	7	10	16	mA
Isolation Resistance	100	-	-	MΩ

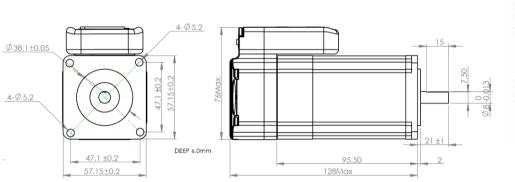
Note : The max pulse frequency is software configurable

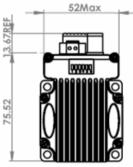
Operating Environment

Cooling	Natural Cooling or Forced cooling			
	Environment	Avoid dust, oil fog and corrosive gases		
Operating	Ambient Temperature	0° C $- 40^{\circ}$ C (32 $^{\circ}$ F $- 104^{\circ}$ F)		
Environment	Humidity	40%RH — 90%RH		
	Operating Temperature (Heat Sink)	70°С (158°Ғ) Мах		
Storage Temperature	-20°C — 65°C (-4°F — 149	°F)		

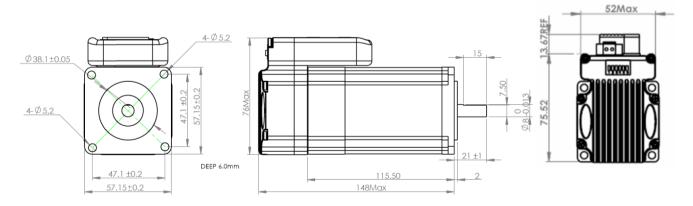

Motor Specifications

Part Number	ISV57T-090	ISV57T-130	ISV57T-180
Rated Power(W)	90	130	180
Rated Torque(Nm)	0.30	0.45	0.6
Peak Torque (Nm)	0.90	1.1	1.5
Rated Speed(rpm)	3000	3000	3000
Peak Speed(rpm)	4000	4000	4000
Rated Voltage(Vdc)	36	36	36
Weight(kg)	0.95	1.25	1.54


Applications


iSVxxx can be used in various applications such as laser cutters, laser markers, high precision X-Y tables, labeling machines, CNC router, etc. Its unique features make the iSVxxx an ideal choice for applications that require both low-speed smoothness and small mounting space.

1.2 Mechanical Specifications



Mechanical Specification of ISV57T-090

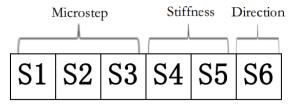
Mechanical Specification of ISV57T-130

Mechanical Specification of ISV57T-180

Chapter 2 Conection

2.1 Connectors and Pin Assignment

iSVxxx has three connectors, a connector for control signals connections, a connector for RS232 communication connection, and a connector for power connections.


	Control Signal Connector							
Pin	Name	I/O	Description					
1	PUL+	I	<u>Pulse Signal</u> : In single pulse (pulse/direction) mode, this input represents pulse signal, active at each rising or falling edge (Software configurable). In double pulse mode (software configurable), this input	The function of formation				
2	PUL-	I	represents clockwise (CW) pulse, active both at each high level and low level. 4.5-24V for PUL-HIGH, 0-0.5V for PUL-LOW. For reliable response, pulse width should be longer than 2.5µs for 200K MAX input frequency or 1µs for 500K MAX input frequency.	The fuction of four pins will be different if ISV motor works in internal velocity mode.				
3	DIR+	I	<u>Direction Signal</u> : In single-pulse mode, this signal has low/high voltage levels, representing two directions of motor rotation. In double-pulse mode (software configurable), this signal is counter-clock (CCW) pulse,	Pls refer to chapter 3 and chapter 4 about how to use these four				
4	DIR-	I	active both at high level and low level. For reliable motion response, DIR signal should be ahead of PUL signal by 5µs at least. 4.5-24V for DIR-HIGH, 0-0.5V for DIR-LOW. Toggle DIP switch SW5 to reverse motion direction.	pins for velocity mode .				
5	ALM+	0	<u>Alarm Signal</u> : OC output signal, activated when one of the following protection is activated: over-voltage and over current error. They can sink or source MAX 50mA current at 24V. By default, the impedance					
6	6 ALM- O		between ALM+ and ALM- is low for normal operation and becomes high when any protection is activated. The active impedance of alarm signal is software configurable.					

Power Connector

Pin	Name	I/O	Description
1	+Vdc	I	Power Supply Input (Positive) 24-36VDC recommended. Please leave reasonable reservation for voltage fluctuation and back-EMF during deceleration.
2	GND	GND	Power Ground (Negative)

	RS232 Communication Connector							
Pin	Pin Name I/O Description							
1	+5V	0	+5V power output (Note: Do not connect it to PC's serial port)					
2	TxD	0	RS232 transmit.					
3	GND	GND	Ground.					
4	RxD		RS232 receive.					
5	NC	-	Not connected.					

2.2 DIP Switch Settings

. Pulses/Rev (S1-S3)

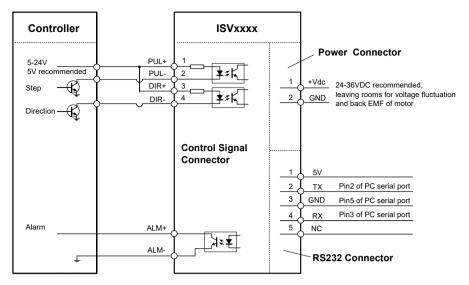
Pulse/rev	S1	S2	S3
Pr0.08	Off	Off	Off
1600	On	Off	Off
2000	Off	On	Off
3200	On	On	Off
4000	Off	Off	On
5000	On	Off	On
6400	Off	On	On
8000	On	On	On

Stiffness setting(S4—S5)

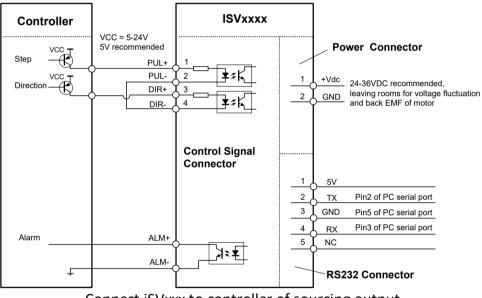
Stiffness	S4	S5
Pr0.03	Off	Off
72	On	Off
71	Off	On
70	On	On

Motor Shaft Direction (S6)

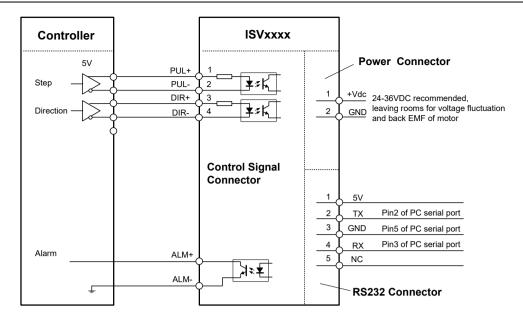
DIP switch S6 is used for changing motor shaft rotation direction. Changing position from "ON" to "OFF", or "OFF" to "ON" will reverse iSVxxx rotation direction.


S6	Direction
Off	CCW
On	CW

2.3 RS232 Communication Cable Connections


Note1: The RS232 communication port is not isolated. Please use an isolated power supply for the ISVxxx when the PC's serial port is not isolated.

Note2: Do not plug or unplug the connector when power is on.


2.4 Typical Connections

Connect iSVxxx to controller of sinking output

Connect iSVxxx to controller of sourcing output

Connect iSVxxx to controller of differential output

Chapter 3 Parameter

3.1 Parameter List

Num	Name	Range	Default	Unit
Pr0.01	Control mode setup	20~21	20	
Pr0.02	Real-time auto-gain tuning	0~2	1	
Pr0.03	Selection of machine stiffness at real-time auto-gain tuning	50~81	70	
Pr0.04	Inertia ratio	0~10000	300	%
Pr0.06	Command pulse rotational direction setup	0~ 1	0	
Pr0.08	Command pulse input mode setup	0~ 32767	4096	Pulse
Pr0.13	1st torque limit	0~ 500	300	
Pr0.14	Position deviation excess setup	0~ 500	200	0.1rev
Pr0.20	Test result of inertia ratio	0~ 32767	0	%
Pr1.00	1st gain of position loop	0~ 30000	320	0.1/s
Pr1.01	1st gain of velocity loop	1~ 32767	180	0.1Hz
Pr1.02	1st time constant of velocity loop integration	1~ 10000	310	0.1ms
Pr1.03	1st filter of velocity detection	0~ 10000	15	
Pr1.10	Velocity feed forward gain	0~ 1000	300	0.10%
Pr1.11	Velocity feed forward filter	0~ 6400	50	0.01ms
Pr1.37	Register for special function	0~ 1	0	
Pr2.22	positional command smoothing filter	0~ 32767	0	0.1ms
Pr3.03	Speed command reversal input	0~ 1	0	
Pr3.04	1st speed setup	-5000 ~ 5000	0	r/min
Pr3.05	2nd speed setup	-5000 ~ 5000	0	r/min
Pr3.06	3rd speed setup	-5000 ~ 5000	0	r/min
Pr3.07	4th speed setup	-5000 ~ 5000	0	r/min
Pr3.12	time setup acceleration	0~ 10000	100	ms/(Krpm)
Pr3.13	time setup deceleration	0~ 10000	100	ms/(Krpm)
Pr3.24	maximum speed of motor rotation	0~ 5000	0	r/min
Pr4.06	input selection SI7	0~ 16777215	1200	
Pr4.07	input selection SI8	0~ 16777215	0E00	
Pr4.08	input selection SI9	0~ 16777215	8383	
Pr4.10	output selection SO1	0~ 16777215	1111H	
Pr4.31	Positioning complete range	0~ 10000	10	Pulse
Pr4.35	Velocity coincidence range	10~ 2000	50	r/min
Pr4.36	At-speed	10~ 2000	1000	r/min
Pr5.13	Over-speed level setup	0~ 5000	0	r/min
Pr5.20	Position setup unit select	0~2	0	

3.2 Parameter function

3.2.1 Basic Setting

P	Pr0.01* Control Mode Setup		Range	unit	default		ated ol mode		
	Control Mode Setup			20 - 21	-	20	Р	S	
	Setup va	lue	st mode						
	20		Position						
	21		Velocity						

Pr0.02	Rea	al-time Aut	o-gain Tuning	Range	unit	default		ated ol mode
110.02	net		e gan ranng	0 -2	-	1	Р	S
			de of the real-time auto-gain t					
Setup val	ue	mode	Varying degree of load inertia					
0		invalid	Real-time auto-gain tuning func					
1	1 standard Basic mode. do not use unbalanced load, friction compensation or gain switching, mainly used for interpolation movement .							
2	Main application is positioning. it is recommended to use this mode on							
	Caution: If pr0.02=1 or 2 , you can't modify the values of pr1.01 – pr1.13, the values of them depend on the real-time auto-gain tuning ,all of them are set by the driver itself.							
Pr0.03			nachine stiffness at real	Range	unit	default		ated ol mode
110100	tim	e auto gair	ituning	50 -81	-	70	Р	S
	Pr0.03 selection of machine stimpess at real kange unit default control mode							
However,	Notice: Higher the setup value, higher the velocity response and servo stiffness will be obtained. However, when increasing the value, check the resulting operation to avoid oscillation or vibration. Control gain is updated while the motor is stopped.							

For ISV motor , stiffness can be set with switch with SW4,SW5, any change from the SW4,5 will be available after restarting power

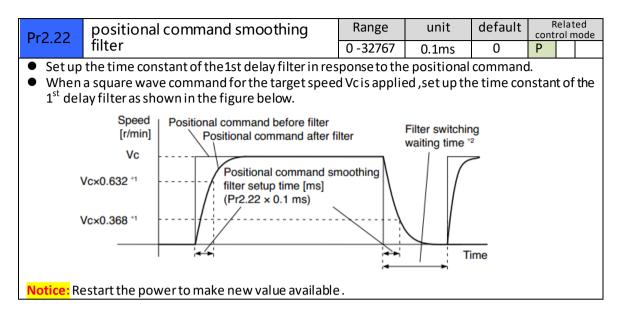
Pr0.04	Inertia ratio	Range	unit	default		ated ol mode			
110.04			%	300	Р	S			
You can set up the ratio of the load inertia against the rotor(of the motor)inertia.									
Pr0.04=(load inertia/rotate inertia)×100%									
Notice:									
inertia rat becomes	tia ratio is correctly set, the setup unit of Pr1.01 s tio of Pr0.04 is larger than the actual value, the se larger, and when the inertia ratio of Pr0.04 is sma ocity loop gain becomes smaller.	etup unit of	the ve	locity loop	gain				

Pr0.06*	Command Pulse Rotational Direction	Range	unit	default		ated ol mode
110.00	Setup	0 -1	-	0	Р	
Setcomm	and pulse input rotate direction, command pulse	inputtype	2			
Pr0.07*	Command Pulse Input Mode Setup	Range	unit	default		ated ol mode
110.07	command r disc input mode setup	0 -3	-	3	Р	

Pr0.06	Pr0.07	Command Puls	e Format	Sig	gnal	Dir	sitive ectio mma	n	Dire	gative ection nmand	
0	0 or 2	90 phase difference 2-phase pulse(A p phase)		Puls sign	-			F			
	1	Positive direction negative direction		Puls sign	-	_					
	3	Pulse + sign	Puls sign		t6	↔ t4 t5 "H"			±5 "∟"	t6	
1	0 or 2	90 phase difference 2 phase pulse(A phase +B phase)				・ ・				0°	
	1	Positive direction pulse + Pulse sign						_			
	3	Pulse + sign		Puls sign	-						
Command	d pulse inp	out signal allow large	estfrequency	and si	malles	ttim	ie wio	lth			
PULS/SIC	GN Signal I	Input I/F	Permissible Input Frequ		Sm t1	1	tTim t2	e Wi t3	dth t4	t5	t6
Pulse	Long d	istance interface	500kpps	•	2		1	1	1	1	1
series interface	Open-	collector output	200kpps		5	2	2.5	2.5	2.5	2.5	2.5
Pr0.08	Comma	and pulse counts	per one mo	otor	Rang	e	unit	d	efault		ated ol mod
10.00	revolut	tion			0-327	67	pulse	e	0	Р	
<i>W</i> hen this	mmand p setting is ome valid.	ulse that causes sing 50,Pr009 1 st numera	gleturn of the ator of electro	e moto onic ge	or shaf ear an c	t. d PrO	.10 D	enon	ninator	ofele	ctroni
Pr0.20	Display	value of inertia r	atio		Ran	ge	uni	t d	efault		ated ol mod
10.20	Uspidy		ลเบ		0 -32	767	%		0	P	S
Notice: Pr0.04=Pr This value		nly for display the in	ertia value, tl	nisisu	used fo	orse	tting	the v	alue of	Pr004.	

3.2.2 Gain Adjustment

Pr1.00	1st gain of position loop	Range	unit	default		ated ol mode
111.00	ist gain of position loop	0 -30000	0.1/s	320	Р	
	etermine the response of the positional contro aster the positioning time you can obtain. Note	, ,		U 1		

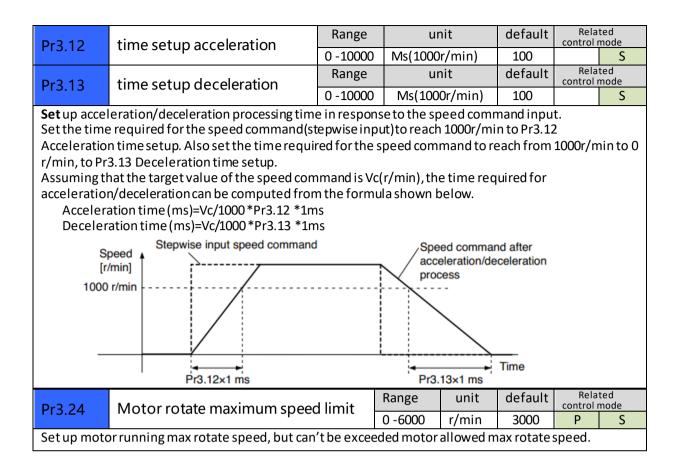

Pr1.01	1st gain of velocity loop	Range	unit	default		ated ol mode
111.01	rst gain of velocity loop		0.1Hz	180	Р	S
servo syst	etermine the response of the velocity loop. In a em by setting high position loop gain, you need vever, too high setup may cause oscillation.					
Pr1.02	1st Time Constant of Velocity Loop	Range	unit	default		lelated rol mode

 PT1.02
 Integration
 0 -10000
 0.1ms
 310
 P
 S

 You can set up the integration time constant of velocity loop, Smaller the set up, faster you can dog-in deviation at stall to 0.The integration will be maintained by setting to "99999".The integration
 P
 S

					Ra	nge	unit	defaul	L	lated
Pr1.03	3 1st F	ilter of Veloo	city Detectio	on	0 -	31	-	15	P	ol mod
Υοι	u can set u	p the time con	stant of the lo	w pass filter	(LPF) aft	erthe	espeed	detecti	ion, in 32	2
• •		igher the setup	-		you can o	btair	n so tha	at you ca	an decre	ase
		, however, resp			. .					
Υοι	u can sett	he filter param		the loop gai		-		_	able:	
S	et Value	Speed Dete Cut-off Free		Set Value	Speed Detection Fil Cut-off Frequency(
	72	120		67	Cut-OI	85	•	y(nz)		
	71	110		66		80	-			
	70	100		65			50			
	69	95		64		7(00			
	68	90	0	63		65	50			
					Range	U	init	defaul	L -	lated
Pr1.1	0 Velo	Velocity feed for ward gain			0 -1000	0	1%	300	P	ol mod
Aultin	olythevel	ocity control co	lated accordi					-	nd by	
		parameter and								
	ol process.				a comma	1416	Sarting	,	e positi	onar
		Range						defaul		lated ol mod
Pr1.1	1 Velo	city feed for	Velocity feed for ward filter					ΓO		
0 -6400 0.01ms 50 P										
usage he ve ncrea:	e example elocity feed used with th	stant of 1st del of velocity fee d forward will b ne speed feed f n at a constant s	d forward) become effect forward filters	ive as the ve set at approx	input of s locity feed (.50 (0.5m	beed forv s). Tł	feed fo ward ga ne posi	orward. ain is gra	idually eviation	
usage The ve ncrea: luring he val	e example elocity feed used with the goperation lue of velo	of velocity fee	d forward) become effect forward filter speed is reduc ard gain.	ive as the ve set at approx ced as showr	input of s locity feed c.50 (0.5m n in the eq	beed forv s). Thuatic	feed fe ward ga ne posi on belc	orward. ain is gra itional d ow in pro	dually eviation	
usage he ve ncrea: luring he val Positic	e example elocity feed used with the goperation lue of velo on deviation	of velocity fee d forward will b ne speed feed f nat a constant s ocity feed forwa	d forward) become effect forward filter speed is reduc ard gain. mand]=comn	ive as the ve set at approx ced as showr nand speed [input of s locity feed c.50 (0.5m n in the eq	beed forv s). Thuatic	feed fe ward ga ne posi on belc	orward. ain is gra itional d ow in pro /positio	idually eviation portion n loop	to
usage The ve ncreas during he val Positic gain[1/	e example elocity feed used with the goperation lue of velo on deviatio /s]×(100-s	of velocity fee d forward will b ne speed feed f n at a constant s poity feed forward on [unit of com peed feed forward	d forward) become effect forward filter speed is reduc ard gain. mand]=comn vard gain[%]/1	ive as the ve set at approx ced as showr nand speed [input of s locity feed c.50 (0.5m n in the eq	beed I forv s). Th uatic mma	feed fe ward ga ne posi on belc	orward. ain is gra itional d ow in pro	dually eviation portion n loop t Re	to
usage The ve ncrea: luring he val Positic gain[1/	e example elocity feed used with the goperation lue of velo on deviatio /s]×(100-s	of velocity fee d forward will b ne speed feed f n at a constant s ocity feed forwa on [unit of com	d forward) become effect forward filter speed is reduc ard gain. mand]=comn vard gain[%]/1	ive as the ve set at approx ced as showr nand speed [input of s locity feed c.50 (0.5m n in the eq unit of cc	beed I forv s). Th uatio	feed for ward ga ne posi on belo and /s]	orward. ain is gra itional d ow in pro /positio	dually eviation portion n loop t Re	to lated
usage The ve ncreas luring he val Positic cain[1/ Pr1.3	e example elocity feed used with the goperation lue of veloc on deviation /s]×(100-s 7 Regi	of velocity fee d forward will b ne speed feed f n at a constant s poity feed forward on [unit of com peed feed forward	d forward) become effect forward filter speed is reduc ard gain. mand]=comn vard gain[%]/1	ive as the ve set at approx ced as showr nand speed [input of s locity feed c.50 (0.5m in the eq unit of co Range	beed I forv s). Th uatio	feed for ward ga ne posi on belo and /s] unit	orward. ain is gra itional d ow in pro /positio defaul	dually eviation portion n loop t Re contro	to
usage he ve ncreas luring he val cositic ain[1/ Pr1.3 Do spe	e example elocity feed ased with the goperation lue of veloc on deviation /s]×(100-s 7 Regination ecial settin	of velocity fee d forward will b ne speed feed f nat a constant s ocity feed forwa on [unit of com peed feed forw ster for spec	d forward) become effect forward filter speed is reduc ard gain. mand]=comn vard gain[%]/1	ive as the ve set at approx ced as showr nand speed [input of s locity feed c.50 (0.5m n in the eq unit of co Range 0 - 1	beed I forv s). Th uatic mma u 0.0	feed for ward ga ne posi- on belo and /s] mit D1ms	orward. ain is gra itional d ow in pro /positio defaul	dually eviation portion n loop t Re contro	to lated
usage he ve ncreas luring he val Positic ain[1/ Pr1.3 Do spe	e example elocity feed used with the goperation lue of veloc on deviation /s]×(100-s 7 Regi	of velocity fee d forward will b ne speed feed f nat a constant s ocity feed forwa on [unit of com peed feed forw ster for spec	d forward) become effect forward filters speed is reduced ard gain. mand]=comm vard gain[%]/1 tial function	ive as the ve set at approx ced as showr nand speed [00	input of s locity feed c.50 (0.5m n in the eq unit of cc Range 0 - 1	beed I forv s). Th uatic mma	feed for ward ga ne posi- on belo and /s] mit D1ms	orward. ain is gra itional d ow in pro /positio defaul	dually eviation portion n loop t Re contro	to lated
he ve ncreas luring he val cositic ain[1/ Pr1.3 Do spe	e example elocity feed ased with the goperation lue of veloc on deviation /s]×(100-s 7 Regination ecial settin	of velocity fee d forward will b ne speed feed f nat a constant s ocity feed forwa on [unit of com peed feed forw ister for spec	d forward) become effect forward filter speed is reduc ard gain. mand]=comn vard gain[%]/1 fial function =0: Velocit	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa	input of s locity feed c.50 (0.5m n in the eq unit of cc Range 0 - 1 rd is avail	beed I forv s). Th uatic mma <u>u</u> 0.0	feed for ward ga ne posi on belo and /s] unit D1ms	orward. ain is gra itional d ow in pro /positio defaul	dually eviation portion n loop t Re contro	to lated
usage The ve ncreas luring he val Positic gain[1/ Pr1.3 Do spect Set Pr1	e example elocity feed sed with the goperation lue of velocion deviation /s]×(100-sion 7 Regin ecial settine tting value 1.37 & 0x0	of velocity fee d forward will b ne speed feed f n at a constant s poity feed forward on [unit of com peed feed forward ster for spect ag as below :	d forward) become effect forward filter speed is reduced ard gain. mand]=comn vard gain[%]/1 fial function =0: Velocit =1: Velocit	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa	input of s locity feed c.50 (0.5m n in the eq unit of cc Range 0 - 1 rd is avail rd is avail	beed I forv s). Thuatic mma <u>u</u> 0.0 個 述 able, dden	feed for ward ga ne posi on belo and /s] unit D1ms	orward. ain is gra itional d ow in pro /positio defaul	dually eviation portion n loop t Re contro	to lated
usage The ve ncreas luring he val Positic gain[1/ Pr1.3 Do spect Set Pr1	e example elocity feed ased with the goperation lue of veloc on deviation /s]×(100-s 7 Regi ecial settin tting value	of velocity fee d forward will b ne speed feed f n at a constant s poity feed forward on [unit of com peed feed forward ster for spect ag as below :	d forward) become effect forward filters speed is reduced ard gain. mand]=comm vard gain[%]/1 fial function =0: Velocit =1: Velocit =0: Torque	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa Feedforwa	input of s locity feed c.50 (0.5m n in the eq unit of cc Range 0 - 1 rd is avail rd is avail d is availa	beed I forv s). Thuatic mma <u>u</u> 0.0 <u>做</u> <u>u</u> 0.0	feed f ward ga ne posi on belc and /s] mit 01ms	orward. ain is gra itional d ow in pro /positio defaul	dually eviation portion n loop t Re contro	to lated
usage The ve ncreas during he val Positic gain[1/ Pr1.3 Do spec Pr1 Pr1	e example elocity feed ased with the goperation lue of velocion deviation /s]×(100-sion 7 Regin ecial settir tting value 1.37 & 0x0	of velocity fee d forward will b ne speed feed f nat a constant s ocity feed forwa on [unit of com peed feed forw ister for spec ag as below :	d forward) become effect forward filters speed is reduced and gain. mand]=comm vard gain[%]/1 fial function =0: Velocit =1: Velocit =0: Torque =2: Torque	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa Feedforwan Feedforwan	input of s locity feed c.50 (0.5m n in the eq unit of co Range 0 - 1 rd is avail d is forbid d is forbid	beed I forv s). Th uatic mma <u>u</u> 0.0 <u>ble</u> , dden ole, dden;	feed f ward ga ne posi on belc and /s] mit D1ms	orward. ain is gra itional d ow in pro /positio defaul	dually eviation portion n loop t Re contro	to lated
usage The ve ncreas during he val Positic gain[1/ Pr1.3 Do spec Pr1 Pr1	e example elocity feed sed with the goperation lue of velocion deviation /s]×(100-sion 7 Regin ecial settine tting value 1.37 & 0x0	of velocity fee d forward will b ne speed feed f nat a constant s ocity feed forward on [unit of com peed feed forward ister for spect ag as below :	d forward) become effect forward filters speed is reduced and gain. mand]=comm vard gain[%]/1 fial function =0: Velocit =1: Velocit =0: Torque =2: Torque =0: "motor	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa Feedforwa	input of s locity feed (.50 (0.5m h in the eq unit of cc Range 0 - 1 rd is avail rd is forbid d is availa d is forbid Er1A1" is	beed I forv s). Thuatic mma uatic mma <u>u</u> 0.0 <u>做</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u>	feed for ward ga ne posion belo and /s] mit D1ms ; able,	orward. ain is gra itional d ow in pro /positio defaul	dually eviation portion n loop t Re contro	to lated
usage The ve ncreas luring he val Positic gain[1/ Pr1.3 Do spec Pr1 Pr1 Pr1	e example elocity feed sed with the goperation lue of velocion deviation /s]×(100-sion)/s]×(100-sion	of velocity fee d forward will b ne speed feed f n at a constant s ocity feed forward on [unit of com peed feed forward ister for spect ag as below :	d forward) become effect forward filters speed is reduced ard gain. mand]=comm vard gain[%]/1 fial function =0: Velocit =1: Velocit =0: Torque =2: Torque =0: "motor =4: "motor	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa Feedforwan Feedforwan	input of s locity feed a.50 (0.5m h in the eq unit of cc Range 0 - 1 d is avail d is forbid d is availa d is forbid Er1A1" is Er1A1" is	beed I forv s). Th uatic mma u u u u u u u u u u u u u u u u u u	feed for ward gather position beloc and /s] unit 01ms ; able, dden;	orward. ain is gra itional d ow in pro /positio defaul 0	dually eviation portion n loop t Re contro	to lated
usage The ve ncreas luring he val Positic gain[1/ Pr1.3 Do spec Pr1 Pr1 Pr1	e example elocity feed ased with the goperation lue of velocion deviation /s]×(100-sion 7 Regin ecial settir tting value 1.37 & 0x0	of velocity fee d forward will b ne speed feed f n at a constant s ocity feed forward on [unit of com peed feed forward ister for spect ag as below :	d forward) become effect forward filters speed is reduced ard gain. mand]=comm vard gain[%]/1 fial function =0: Velocit =0: Velocit =0: Torque =2: Torque =0: "motor =4: "motor =8: "Position =8: "Position	ive as the ve set at approximation red as shown hand speed [00 y Feedforwa y Feedforwa Feedforwa Feedforwa over speed over speed on following on following	input of s locity feed a.50 (0.5m h in the eq unit of co Range 0 - 1 rd is availa d is forbid Er1A1″ is Er1A1″ is error Er18 error Er18	beed I forv s). Thuatic mma uatic mma <u>u</u> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0	feed for ward gather on beloce and /s] unit 01ms ; able, dden; availa	orward. ain is gra itional d ow in pro /positio defaul 0	dually eviation portion n loop t Re contro	to lated
usage The ve ncreas during he val Positic gain[1/ Pr1.3 Do spect Pr1 Pr1 Pr1 Pr1 Pr1	e example elocity feed sed with the goperation lue of velocion deviation /s]×(100-sion)/s]×(100-sion	of velocity fee d forward will b he speed feed f hat a constant s poity feed forward on [unit of com peed feed forward ster for spect ag as below : 1 2 4 8	d forward) become effect forward filters speed is reduced and gain. mand]=comm vard gain[%]/1 fial function =0: Velocit =1: Velocit =0: Torque =2: Torque =0: "motor =4: "motor =8: "Position =0: "Overloot	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa Feedforwan Feedforwan rover speed over speed on following oad Er100" is	input of s locity feed a.50 (0.5m n in the eq unit of co Range 0 - 1 rd is avail d is forbid d is availa d is forbid Er1A1″ is error Er18 error Er18 available	世 beed I forv s). Thuatic mma uatic mma <u>u</u> 0.0 <u>ble</u> , <u>dden</u> ble, <u>dden</u> ble, <u>dden</u> ; <u>avail</u> forbi <u>60</u> ° is <u>60</u> ° is ,	feed for ward gather on belo and /s] mit 01ms ; able, dden; availa forbio	orward. ain is gra itional d ow in pro /positio defaul 0	dually eviation portion n loop t Re contro	to lated
usage The ve ncreas during he val Positic gain[1/ Pr1.3 Do special Pr1 Pr1 Pr1 Pr1 Pr1	e example elocity feed sed with the goperation lue of velocion deviation /s]×(100-sion)/s]×(100-sion	of velocity fee d forward will b he speed feed f hat a constant s poity feed forward on [unit of com peed feed forward ster for spect ag as below : 1 2 4 8	d forward) become effect forward filters speed is reduced and gain. mand]=comm vard gain[%]/1 fial function =0: Velocit =1: Velocit =0: Torque =2: Torque =0: "motor =4: "motor =0: "Position =8: "Position =0: "Overloon =0x10: "Overloon =0x10: "Overloon	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa Feedforwar Feedforwar over speed on following oad Er100" is erload Er100	input of s locity feed a.50 (0.5m n in the eq unit of co Range 0 - 1 d is availa d is forbid Er1A1" is error Er18 error Er18 available " is forbid	世 beed I forv s). Th uatic mma uatic mma <u>u</u> 0.0 den ble, den ble, den ble, so ^o is 0 ^o is den	feed for ward gather on belo and /s] mit D1ms ; able, dden; availa forbio	orward. ain is gra itional d ow in pro /positio defaul 0	dually eviation portion n loop t Re contro	to lated
usage The ve Increase Iuring he val Positic gain[1/ Pr1.3 Do spec Pr1 Pr1 Pr1 Pr1 Pr1 Pr1 Pr1	e example elocity feed sed with the goperation lue of velocion deviation /s]×(100-sion)/s]×(100-sion	of velocity fee d forward will b ne speed feed f n at a constant s ocity feed forward on [unit of com peed feed forward ister for spect as below : 2 4 8 0	d forward) become effect forward filters speed is reduced and gain. mand]=comm vard gain[%]/1 fial function =0: Velocit =1: Velocit =0: Torque =2: Torque =0: "motor =4: "motor =8: "Position =0: "Overloot	ive as the ve set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa Feedforwar Feedforwar over speed over speed on following on following on following oad Er100" is erload Er100	input of s locity feed a.50 (0.5m in the eq unit of co Range 0 - 1 rd is avail d is forbid d is availa d is forbid Er1A1" is error Er18 available " is forbid D0" is forbid	beed I forv s). Th uatio mma uuatio mma <u>u</u> 0.0 den; dden ole, dden; o0 [°] is o0 [°] is dden	feed for ward gather on beloc and /s] unit 01ms ; able, dden; availa forbioc ;	orward. ain is gra itional d ow in pro /positio defaul 0	dually eviation portion n loop t Re contro	to lated

3.2.3 Vibration Suppression


3.2.4 Velocity Control

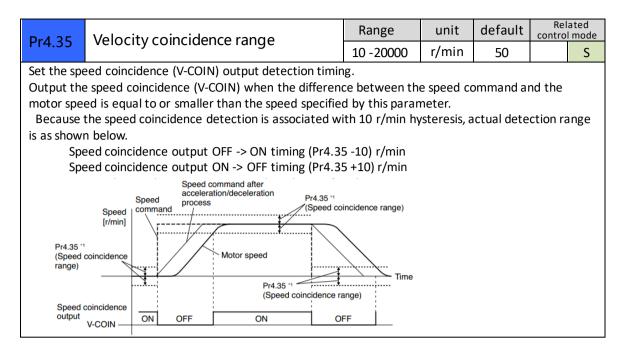
Pr3.03	Re	versal of speed	command input	Range	unit	default	R conti	elate rol m	
115.05		versui er speed	0 -1	-	0		S		
Specify the polarity of the voltage applied to the analog speed command (SPR).									
Setup value Motor rotating direction									
0		Non-reversal	[+voltage] → [+direction]	[-voltage] →[-	direction]			
1		reversal	[+voltage] —{-direction]	[-voltage]	→[+	direction]			
Caution: When you compose the servo drive system with this driver set to velocity control mode									
and external positioning unit, the motor might perform an abnormal action if the polarity of the									
speed cor	nmar	nd signal from the	unit and the polarity of this p	barameter	setup	does not n	natch		

Pr3.04	1th speed of speed setup	Range	unit	default	-	lated I mode
113.04		-20000 -20000	r/min	0		S
Pr3.05	2th speed of speed setup	Range	unit	default	-	lated I mode
113.05		-20000 -20000	r/min	3000		S
Pr3.06	3th speed of speed setup	Range	unit	default	-	lated I mode
115.00	strispeed of speed setup	-20000 -20000	r/min	0		S
Pr3.07	4th speed of speed setup	Range	unit	default		lated I mode
113.07	the second second	-20000 -20000	r/min	0		S

Set up internal command speeds, 1st to 4th

selection 1 of internal command speed(INTSPD1)	selection 2 of internal command speed (INTSPD2)	selection of Speed command
OFF	OFF	1st speed
ON	OFF	2nd speed
OFF	ON	3rd speed
ON	ON	4th speed

3.2.5 I/F Monitoring Function


Pr4.06	DIR+/DIR- Input Selection	Range		unit	Default	Related control mode			
114.00	Dire / Dire input Selection	0-00FFFFFF	۱	-	0x1200	S			
If ISV motor works in position mode , pls make sure Pr406 set as default setting 0x1200. If ISV motor works in velocity mode , pls make sure Pr406 set as below :									
Signal na	ame	symbol	val	ue					
Selectio	n 1 input of internal command speed	INTSPD1	8E*	**h					
Selectio	n 2 input of internal command speed	INTSPD2	8F*	**h					
For exam	ple , Pr406 set as 0x8E00 or 0x8F00 .				_				
	1) Power need to be restarted to make			able .					
	The value of Pr406 can't be set equ	ally to Pr407.							

Pr4.07	PUL+/PUL-Input Selection	Range	unit	Default	Related control mode				
114.07		0-00FFFFFh -		0x0E00	S				
If ISV motor works in position mode , pls make sure Pr407 set as default setting 0x0E00.									
If ISV mot	If ISV motor works in velocity mode, pls make sure Pr407 set as below :								
Signal na	Signal name symbol value								
Selectio	n 1 input of internal command speed	INTSPD1	8E**h						
Selectio	n 2 input of internal command speed	INTSPD2	8F**h						
	For example , Pr406 set as 0x8E00 or 0x8F00 .								
Notice : 1) Power need to be restarted to make new value available .									
2) The value of Pr407 can't be set equa	ally to Pr406.							

D#4.00	Servo on status for enabling	Range	unit	Default	Related control mode	
Pr4.08	servo on status for enabling	0-00FFFFFFh	-	0x8383	S	
This parameter set the status of servo on for enabling , enabling means the shaft of motor is lock , disabling means the shaft of motor is free and can be run with hand .						
Setvalue	Details					
0x8383	Servo on are ready for both posit	Servo on are ready for both position mode and velocity mode after power on				
0x0383	Servo on is ready for position mo	Servo on is ready for position mode, but not for velocity mode after power on.				
0x8303	Servo on is ready for velocity mo	Servo on is ready for velocity mode , but not for position mode after power on			eron	
0x303	Servo on is unavailable for both position mode and velocity mode after power on					
Notice : new value is available without restarting the power.						

Pr4.10	Output selection of		Range	è	unit		Rel contro	ated I mode
P14.10	ALM+/ALM-		0-00FF	FFFFh	-	0x1111	Р	S
Assign fu	nctions to SO outputs.							
This para	meter use 16 binary system do	o setup, a	as follow	ing:				
00 *	* h: position control			-				
00 * * -	- h: velocity control							
Please at	[**] partition set up function	number.						
Signal	name	symb	ool	Setup	/alue			
Invalid		-		00h				
Alarm	output(a contact)	Alm		01h				
Alarm	output(b contact)	Alm		11h				
Positic	oning complete output	INP		04h				
At-spe	ed output	AT-SI	PPED	05h				
Velocit	ty coincidence output	V-COIN 08h						
	Notice : 1) New value will be available imediately.							
	Notice : 1) New value will be available imediately . 2) The value of Pr410 can't be set equally to other IO setting .							

Pr4.31	Pr4.31 Positioning complete range		unit	default		ated I mode
P14.51	Positioning complete range	0 -10000	Encoder unit	10	Р	
Set up the timing of positional deviation at which the positioning complete signal (INP1) is output.						

3.2.6 Extending setup

Pr5.13 Over-speed level setup		Range	unit	default	Rel contro	ated I mode
PI5.15	Over-speed lever setup	0-20000	r/min	0	Р	S
If the mot	If the motor speed exceeds this setup value, Err1A.0[over-speed protect] occurs.					
The over-speed level becomes 1.2 times of the motor max, speed by setting up this to 0.						

Chapter 4 Alarm

The green light turns on when iSVxxx is powered on and functions normally. In any case that drive protection is activated, the red LED blinks periodically (in every 4 seconds) to indicate the error type. In each blink, red light is on for 0.2 second and then off for 0.3 second.

Priority	Time(s) of Blink	Sequence wave of red LED	Description
1st	1	0.5s 5s 0.5s	Hardware Over-current protection activated when peak current is greater than 18A
2nd	2	0.580.58 0.58 58 0.58	Over-voltage protection activated when drive working voltage is greater than 60VDC
3rd	3		Software over-current protection
4th	4		Over-load protection
5th	5		Encoder error activated when encoder connection or feedback is not correct
6 th	6		number of pole-pairs error activated when the number of pole-pairs setting is wrong
7th	7		Position following error activated when position following error limit exceeded the pre-set value (4000 pulses by default, or value set value by a customer)
8th	1 short 1 long	0.580.58 1.5s 58 0.580.5s 1.5s	Motor stall protection
9th	1 short 2 long	0.50.5s 1.5s 5s 0.5s0.5s 1.5s	Current null shift protection
10th	1 short 3 long		Parameter saving error
11th	1 short 4 long		Others error

ALM	Over current(hardware)	Over voltage	Over current (software)	Overload
Code in Protuner	Er0E1	Er0C0	Er0E0	Er100
LED Blink	1 short	2 short	3 short	4 short

ALM	Enocder err	Poles err	Pos following err	Over speed
Code in Protuner	Er150/Er151	Er0D1	Er180	Er1A0/Er1A1

IED Blink	5 chort	6 chart	7 short	1 chart 1 long
	5 5101	0 311011	7 511011	I SHOLL, I HUNG

Chapter 5 Run

5.1 Inspection Before trial Run

No	ltem	Content
1	Inspection on wiring	Power cable , tuning cable , signal cable
2	Confirmation of power supply	The voltage between Vdc and Gnd is no more than 36Vdc .
3	Fixing of position	Motor installation
4	Inspection without load	Motor shaft doesn't connect the load

5.2 Run

ISV**** can work in both position mode and internal velocity mode .

5.2.1 Position control

connection

Port	Default
+Vdc	+24V~+36Vdc
GND	Power GND
PUL+/PUL-	Pulse input signal
DIR+/DIR-	Direction input signal
ALM+/ALM-	Alm output signal
SW1	Microstep setting
SW2	Microstep setting
SW3	Microstep setting
SW4	Stiffness selection 1
SW5	Stiffness selection 2
SW6	Running direction

Steps:

Connect the motor with tuning cable (CABLE-PC-i)

a) How to find the ratio of inertia for one axis

It is very important to find ratio of inertia for one axis in order to make best performance before setting other parameter (for example, setting PID of position loop or velocity loop).

Here below is step to find ratio.

Connect motor with load if you need to test one axis.

Do make the axis can be moved in safe distance, any interference should be avoided to ensure safety and accuracy of testing .

- 1.1 set the driver working in position loop (pr0.01=20).
- 1.2 click "run test" , then set the following value below :

W Leadshine EL5Series	
Communication Display <u>T</u> ools Language Help	
· · · · · · · · · · · · · · · · · · ·	
Run Test	×
PositionEmor(p) PositionCommandVelocity(pm) Select Channel	
40 4100 1900 1900 🔽 1 Sosi Linder or (3)	•
16 3280 1520 1520 1520 172 PositionConnandVo	locity(rpm) 👻
12 2460 1140 1140 V 3 VelocityFeedback	rpn) 🔻
🗸 CurrentPeedback ()	•
0 1640 760 760 760 Sampling Setup	
a 820 A complete dual at all all all all all all a structure were seen and a structure of the structure of t	tyFeedback -
	EdgeTrigger •
-380 -380 Trigger Rank 100	
-1640 Jack Prints 1000	-
Surfige Internet (a)	30+0.125 -
12 -2460	
-1520 -1520	1000
4100 -1900 -1900	
0 375 750 1125 1500 1875 2250 2625 3000 3375 3750 (Cumult-seduct/(x) Time(ms) VelocityFeedback/pm)	
Position Gain IstPositionLoopGain[175 IstVelocityLoopGain[140 IstTorqueFilter 200 IstVelocityLoopIntegrationTimeConstant 400	ode
2ndPositionLoopGain 220 2ndVelocityLoopGain 140 2ndTorqueFilter 200 2ndVelocityLoopIntegrationTimeConstant 10000	ode
VelocityFeedforwardGain 300 TorqueFeedforwardGain 150 ControlSwitchingMode 10 RatioOfInertia(X) 200 TorqueFeedforwardGain	
RealtimeAutonaticAdjustmentMode Locate 💌 RealtimeAutonaticAdjustmentRigid 10 💌	
Speed Traperoidal Parameters Start	
Velocity(rpm) 1500 AccelerationAndDecelerationTime(ms/Krpm) 100 IntervalTime(ms) 400	
	start button will start.

Set RealtimeAutomaticAdjustmentMode as Manual,

And set Real timeAutomaticAdjustmentRigid as 70 or 71.

Then set: Velocity = 1500 rpm, acceleration = 100, interval time = 1000,

distance = 500 (0.1 rev) Repeat time = 3, RunningMode: Positive and negative

Check the value of Pr020, then minus 100, the result means the value of pr004.

For example.

Check the value of Pr020, if the value is 500, then pr004 =400, it means the ratio of inertia equals 4. (If you can't find the pr020, refer to appendix "How to find the hidden parameter")

b) Set electric ratio

Pr008 can be set for counts per rev if SW1 and SW2 are both OFF. Or change the status of SW1 and SW2 to change the counts per rev.

c) set running direction

Both SW6 and Pr006 can be used to set direction of running .

d) download and save the new value , and restart the power to make values available .

5.2.2 Internal speed control

Port		
+Vdc	24-50 Vdc	
GND	Power gnd	
PUL+/PUL-	INTSPD1	Pr4.07=8E00
DIR+/DIR-	INTSPD2	Pr4.06=8F00
ALM+/ALM-	Alm output signal	
SW4	Stiffness selection1	
SW5	Stiffness selection2	

- a) set pr003 and pr004 in position mode (pr001=20)
- b) set pr001=21, set pr407 and pr406 as 8E00 and 8F00
- set the velocity value : set pr304=0 ,pr305=1000 , set pr306= -500 , pr307= 1500, there must c) be one velocity as 0.
- d) set the value for acceleration and deceleration for Pr312 and Pr313

[INTSPD1]	【INTSPD2】	Veloctiy value
OFF	OFF	Pr3.04
ON	OFF	Pr3.05
OFF	ON	Pr3.06
ON	ON	Pr3.07

Frame (mm)	Output power (W)	Type name	Rated Torque (N.M)	PeakTorque (N.M)
	90	ISV-B23090T-D4	0.3	0.8
57	130	ISV-B23130T-D4	0.45	1.1
	180	ISV-B23180T-D4	0.6	1.5
Cable	Cable for Tuning		Cable – PC-i	

Chapter 6 Order information

Appendix

How to find the hidden parameter

The value of many parameters are forbidden to change , because usually the value has been set properly, however some parameters are needed to be checked or changed, for example , Pr715 need to be changed to match the motor type.

Here is the step to change the value of Pr020:

Run the software of ProTuner, we just find part of the parameter:

I 🛒 🔤 🚳	营 📂						
rameter Manage						_	• *
ReadFile 💾 Saved	s 🛧 Unload 🌡	Download 1000 Save 22 Pars	meterCompare	Reset 🦳	Help		
				~ ~			
Classify Select	Parameter N.	. ParameterName	Value	Range	Default	Units	Remark
asicSetting	Fr0.01	Control mode	1	0~5	0	-	Power of
ainAdjustment ibrationSuppression	Pr0.02	Real-time auto-gain tuning mo	2	0~2	0	-	No
ibrationSuppression elocityTorgueControl	Pr0.03	Real-time auto-gain tuning stiff	11	0~31	11	-	No
onitorSetting	Pr0.04	Ratio of inertia	250	0~10000	250	%	No
stensionSetting pecialSetting	Pr0.06	Command pulse polar setup	0	0~1	0	-	Power off
actorySetting	Pt0.07	Command pulse input mode s	3	0~3	3	-	Power off
	Pr0.08	Command pulse counts per o	0	0~ 32767	0	Pulse	Power off
	Pr0.09	1st numerator of electronic gear	1	1~32767	1	-	No
	Pr0.10	Denominator of electronic gear	1	1 ~ 32767	1	-	No
	Pr0.11	Output pulse counts per one m	2500	1 ~ 2500	2500	P/rev	Power off
	Pr0.12	Pulse output logic reverse	0	0~1	0	-	Power off
	Pr0.13	1sttorque limit	300	0~500	300	-	No
	Pr0.14	Position deviation setup	200	0~500	200	0.1 rev	Encoder
	Pr0.16	Extenal regenerative resistor	50	10~500	50	Ω.	Power off
	Pr0.17	Regeneration discharge resis	50	10~5000	50	W	Power off
	Pr0.18	Vibration suppression - N after	0	0~1000	10	Pulse	Encoder
	Pr0.19	Microseismic inhibition	0	0~1000	10	0.1Pulse	Encoder
Add Coston	1						
Add Curton							•

- 1. Now here is the way to find all of them :

 - b. Click "description":

• 🕺 🔚 🎯 🛛							
rameter Manage						-	
📑 BeadFile 💾 SaveAz	🕇 Unload 🚽	Download 🗰 Save 🇌	ParameterCompare	💣 Beset 🕐	Help		
Classify Select	Parameter N	ParameterName	Value	Range	Default	Units	Remark
PasicSetting SainAdjustment	Pt7.15 Pt7.16	Motor model input Encoder selection	8	0 ~ 7FFF 0 ~ 512	3	-	Hexadec Power off
Virsti Gudgprasiin Maleityf ergyddia Maleityf ergyddia Erseni Gotting Speil Gotting Anlaydattay Anlaydattay							
Add Custon	•						Þ

c. Then double click "factorysetting", then we can find all parameter:

Classify Select	Parameter N	ParameterName	Value	Range	Default	Units	Rema
BasicSetting	Pr0.00	Mode loop gain	772	0 ~ 32767	1	0.1Hz	No
SainAdjustment	Pr0.01	Control mode	1286	0~10	0	-	Power
'ibrationSuppression 'elocityTorgueControl	Pr0.02	Real-time auto-gain tuning mo	1800	0~2	0	-	No
lonitorSetting	Pr0.03	Selection of machine stiffness	2314	0 ~ 31	11	-	No
ExtensionSetting SpecialSetting	Pr0.04	Ratio of inertia	2828	0~10000	250	%	No
actorySetting	Pr0.05	Command pulse input selection	3342	0~1	0	-	No
	Pr0.06	command pulse rotational dir	3856	0~1	0	-	Power
· · · · ·	Pr0.07	Command pulse input mode s	4370	0~3	3	-	Power
	Pr0.08	Command pulse counts per o	4884	0~32767	0	Pulse	Power
Pr0.09	Pr0.09	1 st numerator of electronic gear	5398	1 ~ 32767	1	-	No
	Pr0.10	Denominator of electronic gear	772	1 ~ 32767	1	-	No
	Pr0.11	Output pulse counts per one m	1286	1~2500	2500	P/rev	Power
Pri	Pr0.12	Reversal of pulse output logic	1800	0~1	0	-	Power
	Pr0.13	1 st torque limit	2314	0~500	300	-	No
	Pr0.14	Position deviation setup	2828	0~500	200	0.1 rev	Encod
	Pr0.15	Absolute encoder setup	3342	0~2	0	-	No
	Pr0.16	Extenal regenerative resistor	3856	10~500	50	Ω	Power
Pr0.17 Pr0.18 Pr0.19 Pr0.20 Pr0.21 Pr0.21	Pr0.17	Regeneration discharge resis	4370	10~5000	50	W	Power
	Pr0.18	Vibration suppression - N after	4884	0~1000	10	Pulse	Encod
		Microseismic inhibition	5398	0~1000	10	0.1Pulse	Encod
	1 Pr0.20	Reserved parameter	772	- 0 ° 32767	0	-	No
	Pr0.21	Reserved parameter	1286	0 ~ 32767	0	-	No
	Pr0.22	Reserved parameter	1800	0 ~ 32767	0	-	No

Trouble shooting

Problem	Solution
Motor don't run	 ◇ If in position mode, : make sure pr408=8383, pr406=1200, pr407=E00; make sure voltage of input signal (pulse + direction) is between 5 - 24V. ◇ If in internal velocity mode : Make sure pr406 and pr407 are 8F** and 8E** ; Make sure pr304=0 Make sure pr408=8383
ALM	Refer to chapter 4 for details
Factory setting can't be set	Change the value of Pr408 to 303.
The stiffness can't be changed	Check the status of SW3-SW5.